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Abstract. Crossings between spin-singlet and spin-triplet lowest states are analysed within the
model of a two-electron quantum dot in a perpendicular magnetic field. The explicit expressions
in terms of the magnetic field, the magnetic quantum numberm of the state and the dimensionless
dot size for these crossings are found.

Recent progress in nanostructure technology allows us to thoroughly investigate a quantum
motion of confined electrons in semiconductors, in particular, in quantum dots [1,2]. Since the
size of a quantum dot as well as the number of electrons is controlled, we can study different
correlation effects in the ‘artificial atom’. Two interacting electrons in an external potential
turn out to be a useful system, providing a basis for understanding the contribution of different
components of an effective mean field. A detailed examination of the electron spectrum of a
quantum dot can also be approached with alteration of the magnetic field [3].

Low-lying energy levels of a two-dimensional two-electron system in a perpendicular
magnetic field have been analysed quantitatively for various confining potentials [4–6]. In
particular, for a parabolic confining potential the estimations for singlet–triplet and triplet–
triplet ground state phase transitions have been found in the perturbation approach in the
limit of the strong magnetic field [4]. The energy spectrum of two interacting electrons in
the parabolic confining potential has been obtained analytically for particular values of the
magnetic field [7]. In this letter we present the analytical expressions for fulfilment of such
phase transitions at arbitrary values of the magnetic field for a parabolic quantum dot.

Our analysis is based on the oscillator representation method (ORM) developed in [8].
The application of this method to calculate the energy spectrum of the two-electron system
in the magnetic field is discussed in [9] where the reader can find all necessary details. We
consider the two-dimensional version of the model Hamiltonian [9]
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assumingz = 0. HereHspin = g (Es1 + Es2) EB andm? is the effective electron mass. Below,
we use the units(e = c = 1). For the perpendicular magnetic field( EB||z) we choose a gauge
described by the vector

EA =
[
EB × Er

]
/2= 1

2
EB(−y, x,0).
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By introducing the relative and centre-of-mass coordinatesEr = Er2 − Er1, ER = 1
2 (Er1 + Er2), the

Hamiltonian, equation (1), can be separated into the centre-of-mass (CM) and relative-motion
(RM) terms
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and define the characteristic lengths: the effective radius
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)
and the oscillator length

l0 = (h̄/m?ω0)
1/2.

These units allow one to define the dimensionless dot sizek = l0/a? [4]. At k = 0, we have the
model of noninteracting electrons in the magnetic field [10] (see also [3]). The separability and
the conservation of the angular momentum lead to a natural ansatz for the eigenfunction of the

Hamiltonian, equation (2), i.e.9 = ψ (Eq) φ
(
EQ
)
χ (Es1, Es2). According to the Pauli principle,

if the spatial part of the total wave function is symmetric (antisymmetric) with respect to the
inversionr →−r, χ must be a singlet (triplet) spin state. For the eigenvalues we have

E = 2εr +
1

2
EN,M +ES. (5)

Hereεr andEN,M are the eigenvalues of the Hamiltonian of the RM and of the CM motion,
respectively. The solution to the CM HamiltonianHQ is well known [10] and the energy can
be written as
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whereN = 0, 1, ... and M = 0,±1, ... are radial and azimuthal quantum numbers,
respectively, andt = ωc/ω0 whereωc = B

m?
is the cyclotron frequency. The spin of the

two electrons leads to the additional Zeeman energy

ES = g?µBBSz = h̄ω0

4
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]
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me
t. (7)

Here,m is a magnetic quantum number corresponding to the RM Hamiltonian andg? is the
effective Land́e factor. For the RM energy we obtain†
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The quantityx is determined by the following equation:
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In the ORM only the lowest positive solution of equation (10) is interesting. In contrast to
the perturbative approach the main termε0

nm, equation (9), also depends on the Coulomb
forces. The interaction modifies the external potential and results in the effective mean field
potential for the RM. Notice that in the second termεcnm there is a contribution arising due to
radial excitations, i.e., the term〈n|hI |n〉 [9]. The matrix element〈n|hI |n〉 provides a basis for
calculations of the radial excitations modified by the Coulomb interaction and, according to
the rules of the ORM, it has the following form:
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andd = 2 + 2|m|. For particular values of the radial quantum numbern = 0, 1, 2 we obtain
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]
, respectively. Our result for the RM energy, equations

(8) and (9), corresponds to the perturbation approach in the limitx → 1,ωc � ω0 andn = 0
(see below).

Owing to the separability of the CM energy and the RM energy, we have only two
frequencies from equation (6) for dipole transitions(NM)→ (N

′
M
′
)
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† We have corrected the misprint; i.e. the factor 2, which is present in the equation for the energy of relative motion
in [9], is omitted here.
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which are not influenced by the Coulomb interaction. This is a simple example of the
consequence of the Kohn theorem [11]. Since the centre-of-mass quantum numbersN,M

and the quantum numberm are conserved by the Coulomb interaction, the ground state has the
quantum numbersN = 0,M = 0,n = 0. Comparing the energy with differentm 6 0, we can
define the ground state energy at different values of the magnetic fieldωc/ω0. While without the
Coulomb forces the ground state is always the state withm = 0, the Coulomb interaction leads
to a sequence of different ground statesm = −1,−2, ... which are an alternating sequence of
singlet and triplet states. In figure 1 we have plotted the energy of states with differentm for
different values ofk = l0/a∗.

The singlet–triplet ground phase transition (crossing) occurs when the condition
E0,m = E0,m−1(m 6 0) is fulfilled, where we have introduced the notationEn,m = ES+2E2d

n,m.
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Figure 1. Eigenenergies in units ¯hω0 versus the ratioωc/ω0 for a different dot sizek. The family
of statesN = M = n = 0 andm 6 0 is shown (a) fork = 2 and (b) fork = 4. As the ratio
k = l0/a∗ increases the Coulomb interaction rearranges the sequence of levels.
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Taking into account equations (7) and (8), we obtain
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We emphasize that this expression is valid at finite values of the magnetic field. Combining
equation (10) with equation (13), we can define the value ofx at the singlet–triplet crossings
m→ m− 1
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Therefore, equations (13) and (14) define the values of the magnetic field which lead to the
singlet–triplet crossings in the ground state and also in the excited states of the two-electron
system. At the strong magnetic field(ωc � ω0) in the lowest order of the parameterβ we
obtain from equations (13) and (14)
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Equation (17) almost coincides with a similar expression based on the perturbative approach [4]
with the exclusion of the coefficient in front of the term arising from the spin contribution.

For the negative Land́e factor the spin-splitting energy in the magnetic field will lower
the energy of the spinSz = +1 component of the triplet states. In particular, the relation
E0,m = E0,m−1 = E0,m−2 (m odd) defines the point when the singlet phase ceases to exist [4].
Beyond this point we can observe crossings between triplet states defined by the condition
E0,m = E0,m−2 (m odd), which leads to
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For the triplet–triplet crossings the parameterx can be obtained from equations (13) and (18)

x2 = 4t√
1 + t2/4

2 + |m|
47 + 28|m| +

√
16t2

1 + t2/4

(2 + |m|)2
(47 + 28|m|)2 +

3(5 + 4|m|)
47 + 28|m| . (19)

At the strong magnetic fieldωc � ω0 for the triplet–triplet crossingsm→ m− 2 (m odd) we
obtain the following result:
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which coincides with the estimation of the perturbative approach [4]. The singlet–triplet
crossings yield the triplet–triplet ones for polarized electrons. The ground states are determined
with odd values of the magnetic quantum numberm. The radius of each particularm state
decreases as 1/

√
B, and the electrons are pushed towards the dot’s centre. At very high fields
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both the electrons are in the lowest Landau level [12] which, however, consists of the quantum
levels given in equations (8) and (9). Naturally, the Pauli principle prevents the occupation of
the same quantum state by both the electrons. The Coulomb forces become less important for
high-lying single-electron levels. The orbital motion increases the relative distance between
electrons weakening the influence of the Coulomb forces on the crossing of levels. The value
of the parameterk = l0/a? for the singlet–triplet crossing decreases with increasing the radial
quantum numbern as well. In particular, for the two-dimensional system we have obtained
the following relation between the parametersk = l0/a

? for the singlet–triplet crossing at
differentn

(l0/a
?)n=1

(l0/a?)n=0
= 2 + |m|

7 + |m| . (21)

While the interplay between the magnetic field and the Coulomb forces determines the features
of the phase transition (singlet→ triplet) for the ground state (n = 0), it is mainly the magnetic
field that leads to phase transitions for the high-lying statesn > 0.

In conclusion, we have found the exact relations between the dimensionless sizek = l0/a∗
and the values of the magnetic field for the singlet–triplet and the triplet–triplet crossings in the
ground and excited states for two interacting electrons confined by the parabolic potential. The
Coulomb interaction is treated exactly within the analytical approach. The spin interaction is
important for the singlet–triplet crossings whereas it does not contribute to the triplet–triplet
crossings. The last one can be described as the crossing of quantum levels of polarized electrons
in the magnetic field.

We are grateful to Viktor Kabanov for useful discussions. RGN acknowledges financial support
from the Foundation for Research Development of South Africa which was provided under
the auspices of the Russian/South African Agreement on Science and Technology.
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